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NATURAL FREQUENCIES OF HELICAL SPRINGS
OF ARBITRARY SHAPE
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(Received 6 August 1996, and in final form 31 January 1997)

The natural frequencies of helical springs having arbitrary shapes, such as conical,
barrel and hyperboloidal, are obtained by the transfer matrix method using the distributed
mass model and Timoshenko’s beam theory together with the axial deformation. The
governing equations of cylindrical helical springs are applied to free vibration analysis of
non-cylindrical helices. It is shown that the present numerical results agree well with the
previously published ones which have been obtained both theoretically and experimentally.
A comparison of natural frequencies of non-cylindrical helices is made. For the circular
section, the effects of the helix pitch angle, the number of active turns, the ratio of diameters
of the minimum cylinder to the maximum cylinder, and the ratio of diameters of maximum
cylinder to the diameter of wire on the free vibration frequencies of all types of helices are
investigated. The effects of axial and shear deformations, and the rotary inertia are also
studied.
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1. INTRODUCTION

Helical springs having cylindrical or non-cylindrical shapes are fundamental elements of
machines. Although the undamped free vibration problems of cylindrical coil springs
have been reported by many researchers [1–21], there have been only a few studies
on the free vibration of helical springs of irregular shapes [22–25]. Epstein [22] has
theoretically obtained the fundamental frequency for conical coil springs for several
boundary conditions. Nagaya et al. [23] have determined the free vibration frequencies of
non-cylindrical helical springs both experimentally and by the method of Myklestad. For
this purpose, they have used the static element transfer matrix, which they derived in closed
form taking into account only the axial deformation for circular cross-sections. The
Myklestad method has also been employed in Yıldırım’s study [24], including the rotary
inertia, the axial and the shear deformation terms in the free vibrational analysis of
irregular helices. Using both the transfer matrix and the complementary functions
methods, Yıldırım [25] has studied the free vibration of non-cylindrical helical springs.
Yıldırım [25] has presented the first ten exact natural frequencies for circular and squared
sections in graphical forms.

In this study, the problem of free vibration of non-cylindrical coil springs is numerically
treated with the help of the transfer matrix method. An efficient numerical algorithm is
employed for the computation of the element transfer matrix. The helix is considered as
a continuous system and the Timoshenko beam theory is employed. The first three natural
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frequencies are computed and the results are presented for all the helix types used in
practice.

2. FREE VIBRATION EQUATIONS OF NON-CYLINDRICAL HELICAL SPRINGS

Frenet unit vectors are defined as follows:

t=
dr
ds

, n=
dt/ds
dt/ds

, b= t× n, (1)

where ds is the infinitesimal arc length along the curve and r is the position vector. t is
the tangential, n is the normal and b is the binormal unit vector. The relations among these
unit vectors are

dt
ds

= xn,
dn
ds

= tb− xt,
db
ds

=−tn. (2)

Here, x and t are the curvature and the torsion of the wire axis, respectively.
The governing equations of spatial bars in canonical form in Frenet co-ordinates have

been given by Yıldırım [21] as

1Ut /1s= xUn +(1/EA)Tt , 1Un /1s=−xUt + tUb +Vb +(an /GA)Tn , (3a, b)

1Ub /1s=−tUn −Vn +(ab /GA)Tb , 1Vt /1s= xVn +(1/GIt )Mt , (3c, d)

1Vn /1s=−xVt + tVb +(1/EIn )Mn , 1Vb /1s=−tVn +(1/EIb )Mb , (3e, f)

1Tt /1s= xTn − pt +(rA)(12Ut /1t2), 1Tn /1s=−xTt + tTb − pn +(rA)(12Un /1t2),

(3g, h)

1Tb /1s=−tTn − pb +(rA)(12Ub /1t2), 1Mt /1s= xMn −mt +(rIt )(12Vt /1t2),

(3i, j)

1Mn /1s=Tb − xMt + tMb −mn +(rIn )(12Vt /1t2),

1Mb /1s=−Tn − tMn −mb +(rIb )(12Vb /1t2), (3k, l)

where Tt , Tn and Tb are the components of the internal forces on the cross-section
in the t, n, and b directions, and Mt , Mn and Mb are the components of the
internal moments on this section in the t, n, and b directions, respectively.
Similarly, Ut , Un , Ub and Vt , Vn , Vb are the Frenet components of the displacement
and rotational vectors, respectively. E and G are the Young’s modulus and shear
modulus of the material, respectively. A is the cross-sectional area, In and Ib are the
moments of inertia about the n and b axes, respectively. an and ab are Timoshenko’s
coefficients, It is the torsional moment of inertia, r is the density of the material, and
t is the time.

The assumptions that the centroid of the cross-section and the shear center are
coincident, the (n, b) axes are the principal axes of the cross-section, warping is neglected
and, furthermore, the bar has an elastic, homogeneous and isotropic material are used in
equations (3).

Defining the state vector as,

{S(s, t)}= {Ut , Un , Ub , Vt , Vn , Vb , Tt , Tn , Tb , Mt , Mn , Mb}T, (4)
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equations (3) can be written in a compact form,

1{S(s, t)}
1s

=[A]{S(s, t)}+[B]
12{S(s, t)}

1t2 + {P(s, t)}, (5)

where [A] is referred to as the differential matrix and {P} is the load vector. In equation
(5), [A], {P} and {S} are functions of both s and t.

Denoting the angular frequency by v, a harmonic solution in the form of

{S(s, t)}= {S0(s)} sin (vt) (6)

can be assumed for free vibrations. Substituting this solution into equation (5) and setting
the external loads equal to zero, {P}= {0}, the following equation can be obtained:

d{S0(s)}
ds

=[A0(v, s)]{S0(s)}, (7)

where the superscript zero denotes that the quantity is only a function of the co-ordinate
s.

Determining the exact differential equations of non-cylindrical helical springs and their
solution is laborious. In the present study, this problem is handled with the help of the
equations of cylindrical helices. Since the curvatures of non-cylindrical helices vary along
the axis, the bar has been formed by the cylindrical helical elements attached sequentially
to each other. Constant but different curvature is assumed for each element. Hence, the
effective approximate solution for non-cylindrical helices can be obtained using fewer
elements. It is clear that if the number of elements is increased, the approximate solution
will converge rapidly to the exact solution.

The geometrical properties of a cylindrical helix are (see Figure 1)

h=R tan a, c=(R2 + h2)1/2, t= h/c2 = (1/R) sin a cos a,

x=R/c2 = (1/R) cos2 a, ds= c du, (8a–e)

where h is the step for unit angle of the helix, R is the centreline radius of the helix, a is
the pitch angle and du is the infinitesimal angular element.

The horizontal radius of any point that lies on the axis of the bar is determined for barrel
and hyperboloidal types of helices from

R=R1 + (R2 −R1)01−
u

pnc1
2

, (9)

and for conical springs (see Figure 2) from

R=R1 +
(R2 −R1)u

2pnc
, (10)

where nc is the number of active turns.
Although the pitch angle of helices is considered constant, the values c, h and R will

be varied along the axis for the non-cylindrical helix. Thus, the fixed reference value, R0,
which can be selected arbitrarily, has been used for obtaining the differential equations
in non-dimensional form

c2
0 =R2

0 + h2
0 , h0 =R0 tan a. (11)
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Figure 1. The geometrical properties of a cylindrical helix and Frenet co-ordinates.

The dimensionless groups for the elements of the state vector at any section of the bar
are determined as follows:

T�0
i =

c2
0

EIn
T0

i , M�0
i =

c0

EIn
M0

i , U�0
i =

1
c0

U0
i , V� 0

i =V0
i , (i= t, n, b). (12)

Using equations (8), (11) and (12), a set of non-dimensional scalar equations for the
non-cylindrical helix having any double symmetrical cross-sections can be written, as

dU�0
t

du
=

R
c

U�0
n +

Inc
Ac3

0
T�0

t ,
dU�0

n

du
=−

R
c

U�0
t +

h
c

U�0
b +

c
c0

V� 0
b +

anEInc
GAc3

0
T�0

n , (13a, b)

dU�0
b

du
=−

h
c

U�0
n −

c
c0

V� 0
n +

abEInc
GAc3

0
T�0

b ,
dV� 0

t

du
=

R
c

V� 0
n +

EInc
GItc0

M�0
t , (13c, d)

dV� 0
n

du
=−

R
c

V�0
t +

h
c

V� 0
b +

c
c0

M�0
n ,

dV� 0
b

du
=−

h
c

V� 0
n +

Inc
Ibc0

M�0
b , (13e, f)

dT�0
t

du
=−

rAc3
0cv2

EIn
U�0

t +
R
c

T�0
n ,

dT�0
n

du
=−

rAc3
0cv2

EIn
U�0

n −
R
c

T�0
t +

h
c

T�0
b , (13g, h)

dT�0
b

du
=−

rAc3
0cv2

EIn
U�0

b −
h
c

T�0
n ,

dM�0
t

du
=−

rv2Itc0c
EIn

V� 0
t +

R
c

M�0
n , (13i, j)

dM�0
n

du
=−

rv2c0c
E

V� 0
n +

c
c0

T�0
b −

R
c

M�0
t +

h
c

M�0
b ,

dM�0
b
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=−

rv2Ibc0c
EIn

V� 0
b −

c
c0

T�0
n −

h
c

M�0
n .

(13k, l)
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Figure 2. The different shapes of helical springs. (a) Cylindrical; (b) barrel; (c) conical; (d) hyperboloidal.

For the cylindrical springs, it was proved that the coefficients of the odd powers of the
differential matrix, which is available from equations (13), in the characteristics
determinant of [A0] are equal to zero [20, 21]:

[A0]12 − p1[A0]10 − p2[A0]8 − · · ·− p5[A0]2 − p6[I]= [0], (14)

where [I] is the unit matrix and [A0]i is the powers of the differential matrix.
Homogeneous solution of equation (13) associated with the dynamic transfer matrix,

[F], is given as follows:

{S0(u)}=[F(u, v)]{S0(0)}. (15)

Since the curvatures, the material and the cross-section are not changed along the axis,
the elements of the differential matrix will be constant (not a function of length) for
cylindrical helical bars. In this case, the transfer matrix can be numerically obtained from
the standard solution, which is in the form of series:

[F]= eu[A0] = [I]+ u[A0]+
u2[A0]2

2!
+

u3[A0]3

3!
+ · · · · (16)

The infinite and convergent [26] series can be used for determination of the element
transfer matrix as it is, if the pitch angle is small and the system is less rigid. To obtain

T 1

Dimensionless frequencies, m, of the cylindrical helical spring of both edges built in
(d=8 mm, R=26 mm, nc =6·5, a=4·8°, r=7850 kg/m3, E=2·1×1011 N/m2, n=0·3,

an = ab =1·1)

m=R(r/G)1/2 m1 m2 m3 m4

Nagaya et al. [23] (78 elements), including
rotary inertia, including axial deformation 0·00835 0·00914 0·01039 0·01063

Nagaya et al. [23] (78 elements), excluding
rotary inertia, including axial deformation 0·00835 0·00925 0·01039 0·01065

Sawanobori and Fukishima [23], finite
element method 0·00826 0·00923 0·01038 0·01056

Present study (five elements) 0·008254 0·009208 0·010342 0·010536
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T 2

Variation of the theoretical frequencies (in Hertz) with the number of elements for the
hyperboloidal type spring having the ratio of R2/R1 =2·4

Number of elements
ZXXXXXXXXXXXXXXXXXXCXXXXXXXXXXXXXXXXXXV

Modes 15 20 25 30 35 40 45 50 60 70 80 100 200

1 76·06 75·97 75·91 75·86 75·84 75·82 75·81 75·80 75·79 75·78 75.78 75·77 75·76
2 94·66 95·34 95·68 95·87 95·98 96·06 96·11 96·15 96·20 96·23 96·25 96·27 96·30
3 102·54 102·91 103·01 103·04 103·06 103·06 103·07 103·07 103·08 103·08 103·08 103·08 103·09
4 129·69 131·11 131·83 132·24 132·49 132·66 132·77 132·85 132·96 133·03 133·07 133·12 133·13

the overall transfer matrix, the rod is divided into small elements having equal lengths (or
angles) and in this case equation (17) is used:

[F]system =[F]melement , (17)

where m is the number of small elements. In the case of cylindrical helices, the
element transfer matrices are identical and need be computed only once. The overall
transfer matrix can then be calculated with sequential matrix multiplications as in
equation (17).

Although the horizontal angles of the elements of non-cylindrical helices are chosen
to be equal, the element transfer matrices will not be identical owing to varying radii.
In this case, the transfer matrix of each element must be computed. As a result, the required
time for computation of the overall transfer matrix increases depending on the number
of elements.

T 3

Natural frequencies (in Hertz) of hyperboloidal spring for various ratios of R2/R1

Modes
ZXXXXXXXXXXXXXCXXXXXXXXXXXXXV

1 2 3 4 5 6 R2/R1

211·5 235·5 265·1 269·9 413·3 438·5 1·0
Yıldırım [24] 178·8 208·7 227·7 238·3 359·9 376·5 1·2
(50 elements) 130·1 159·3 170·5 193·2 270·6 287·2 1·6

97·7 122·2 130·8 159·3 205·5 227·4 2·0
75·6 95·8 102·8 132·2 160·7 181·7 2·4

210·0 233·0 262·0 270·0 — — 1·0
Nagaya et al. [23] 178·0 205·0 225·0 238·0 — — 1·2
(78 elements), 130·0 157·0 171·0 193·0 — — 1·6
(theoretical) 99·0 121·0 131·0 159·0 — — 2·0

76·0 96·0 103·0 133·0 — — 2·4

212·0 236·0 264·0 274·0 — — 1·0
Nagaya et al. [23], 178·0 216·0 232·0 240·0 — — 1·2
(experimental) 128·0 158·0 172·0 192·0 — — 1·6

96·0 114·0 128·0 160·0 — — 2·0

211·48 235·49 265·05 269·94 413·26 438·52 1·0
Present study 178·91 208·76 227·80 238·41 360·01 376·70 1·2
(50 elements) 130·27 159·51 170·70 193·46 270·95 287·54 1·6

97·87 122·54 131·03 159·79 205·69 228·00 2·0
75·80 96·15 103·07 132·85 160·69 182·96 2·4
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T 4

Free vibration frequencies (in Hertz) of barrel spring of both edges built in for various
ratios of R2/R1 (R1 =25 mm)

Modes

ZXXXXXXXXXXXCXXXXXXXXXXXXXV
1 2 3 4 5 6 R2/R1

71·86 81·19 99·95 99·96 143·88 — 0·2
Yıldırım [25], 65·53 71·52 86·94 87·01 129·60 — 0·4
exact 59·62 61·78 75·08 75·09 114·01 — 0·6

52·11 54·57 64·46 64·77 99·15 — 0·8

71·95 81·3 100·07 100·09 144·1 145·2 0·2
Yıldırım [24] 65·6 71·6 87·03 87·1 129·7 135·1 0·4
(50 elements) 59·7 61·8 75·1 75·2 114·1 120·9 0·6

52·1 54·6 64·5 64·8 99·2 106·0 0·8
44·1 49·0 55·3 56·3 86·1 91·4 1·0

71·0 81·0 — — 143·0 150·0 0·2
Nagaya et al. [23] 64·0 71·0 — — 129·9 134·0 0·4
(78 elements), 59·0 60·0 — — 113·0 120·0 0·6
(theoretical) 52·0 53·0 — — 99.0 104·0 0·8

43·0 48·0 — — 85·0 90·0 1·0

66·0 72·0 — — 129·0 136·0 0·4
Nagaya et al. [23], 60·0 62·0 — — 108·0 116·0 0·6
(experimental) 52·0 55·0 — — 100·0 108·0 0·8

44·0 50·0 — — 87·0 91·0 1·0

71·88 81·22 99·98 99·99 143·93 145·13 0·2
Present study 65·55 71·74 86·96 87·03 129·64 135·03 0·4
(50 elements) 59·63 61·80 75·08 75·12 114·04 120·84 0·6

52·12 54·57 64·46 64·77 99·16 105·96 0·8
44·09 49·04 55·27 56·28 86·15 91·43 1·0

T 5

Natural frequencies (in Hertz) of conical spring fixed at both edges for various ratios of R2/R1

(R1 =25 mm)

Modes

ZXXXXXXXXXXXXCXXXXXXXXXXXXXXXV
R2/R1 1 2 3 4 5 6

0·2 110·64 115·19 135·91 143·77 196·92 204·30
Present 0·4 88·84 91·82 107·52 111·52 163·01 170·96
study 0·6 69·21 74·44 85·24 87·43 131·98 138·69

0·8 54·64 60·33 68·21 69·57 106·22 112·44

0·2 111·8 116·4 137·4 145·4 198·9 206·4
Yıldırım 0·4 89·5 92·5 108·4 112·4 164·3 172·3
[24] 0·6 69·5 74·8 85·7 87·9 132·6 139·4

0·8 54·8 0·5 68·4 69·7 106·5 112·7
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T 6

Natural frequencies (in Hertz) of hyperboloidal spring fixed at both edges for various ratios
of R1/R2 (R2 =25 mm)

Modes

ZXXXXXXXXXXXXXCXXXXXXXXXXXXXXV
R1/R2 1 2 3 4 5 6

0·2 121·88 158·95 172·38 253·18 273·33 305·10
Present 0·4 92·84 118·05 126·64 165·09 197·26 225·36
study 0·6 71·66 88·16 94·30 108·29 149·39 159·76

0·8 55·89 65·76 71·46 75·43 113·22 118·17

0·2 121·3 157·5 171·6 248·5 276·6 299·4
Yıldırım 0·4 92·6 117·5 126·3 164·2 197·3 223·6
[24] 0·6 71·6 88·0 94·2 108·1 149·2 159·5

0·8 55·9 65·7 71·4 75·4 113·2 118·1

3. THE OVERALL TRANSFER MATRIX FOR THE CONTINUOUS SYSTEM

In the transfer matrix method, computing of the overall transfer matrix accurately for
any number of active coils, nc , is a crucial problem. After computing it for u=2pnc , the
minor of the transfer matrix is determined according to the boundary conditions given
at both ends. For example, if the helical spring of both edges built in is considered, the
displacements and the angles of rotation disappear at both ends. With these boundary

Figure 3. Variation of the frequencies associated with the first and sixth modes with respect to the types
of spring. Q, Barrel (mode 1); +, conical (mode 1): w, hyperboloidal (mode 1); R, barrel (mode 6); ×, conical
(mode 6); E, hyperboloidal (mode 6).
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conditions, equation (15) becomes

0 f1,7 · · · f1,12 T�tK L K L K L
G G G G G G0 T�n

G G G G G G0
= * * T�b . (18)G G G G G GG G G G G G

0 M�tG G G G G G
0 M�nG G G G G G

k l k l k l0 u=2pnc f6,7 . . . f6,12 u=2pnc M�b u=0

The value of the circular frequency is defined by setting the determinant of the minor
equal to zero. With this purpose, the different values are assigned to the angular frequency

Figure 4. The effects of the helix pitch angle, the ratio Rmin /Rmax and the number of active turns on the natural
frequencies, for Dmax /d=5. ---, nc =5; ———, nc=15. Q, v1; +, v2; w, v3. (a) Hyperboloidal, a=5°, D2/d=5;
(b) hyperboloidal, a=15°, D2/d=5; (c) conical, a=5°, D1/d=5; (d) conical, a=15°, D1/d=5, (e) barrel,
a=5, D1/d=5; (f) barrel, a=15°, D1/d=5.
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and the determinant of the minor corresponding to that frequency is computed. The
process is carried out numerically and iteratively.

In this study, making use of (i) the infinite series solution for the element transfer matrix
given in equation (16), (ii) the Cayley–Hamilton principle, and (iii) the property of the
differential matrix given in equation (14), an efficient numerical algorithm developed
by Yıldırım [20, 21] is employed to yield the overall transfer matrix comprising the
cases of great helix angles, large number of coils and different cross-sectional shapes. The
present overall transfer matrix also includes the terms of both the axial and the shear
deformations, and of the rotary inertia. The procedure for the algorithm considered is
outlined below.

Figure 5. The effects of the helix pitch angle, the ratio Rmin /Rmax and the number of active turns on the natural
frequencies, for Dmax /d=10. ---, nc =5; ———, nc=15. Q, v1; +, v2; w, v3. (a) Hyperboloidal, a=5°,
D2/d=10; (b) hyperboloidal, a=15°, D2/d=10; (c) conical, a=5°, D1/d=10; (d) conical, a=15°, D1/d=10,
(e) barrel, a=5°, D1/d=10; (f ) barrel, a=15°, D1/d=10.
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To take into account the large pitch angles and rigid systems, the series solution of the
transfer matrix can be arranged in a form that contains the finite powers of the differential
matrix, using the Cayley–Hamilton theorem:

[F]=F1(u)[I]+ s
11

i=1

Fi+1(u)[A0]i. (19)

In equation (19), each function F of u consists of infinite series. Denoting the last term
which will be calculated in series by m, these functions can be expressed in terms of each
element of series, T(m)

i , as

F1(u)=1+T(0)
1 +T(1)

1 +T(2)
1 + · · ·+T(m)

1 ,

Fi (u)=
ui−1

(i−1) !
+T(0)

i +T(1)
i +T(2)

i +· · ·+T(m)
i , i=2, 12, (20)

where the terms, T(m)
i , with zero-numbered superscripts, can be determined easily as

follows:

T(0)
(2k+1) =

u12

12 !
p(6− k), k=0, 1, 2, . . , 5; T(0)

(2k) =
u13

13 !
p(7− k), k=1, 2, 3, . . . , 6.

(21)

Figure 8. The effects of all the rotary inertia and the axial and shear deformations on the free vibration
frequencies, for Dmax /d=5, a=5° and nc =15. Q, v1; +, v2; w, v3. (a) Hyperboloidal; (b) conical; (c) barrel.
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It is evident that the numerical transfer matrix cannot be calculated accurately unless
numerous terms are added to the series. For this reason, some preventive measures against
the overflow limit of computer must be taken during the computation. In this study, as
a result of lengthy manipulations, the relationship between any two consecutive terms has
been obtained and given below:

T(n)
(2k+1) =

u2

(11+2n)(12+2n)
{T(n−1)

(11) p(6− k) +T(n−1)
(2k−1)}, k=0, 1, 2, . . . , 5;

T(n)
(2k) =

u2

(12+2n)(13+2n)
{T(n−1)

(12) p(7− k) +T(n−1)
(2k−2)}, k=1, 2, 3, . . . , 6. (22)

4. TEST PROBLEMS

For the purpose of computing the natural frequencies of cylindrical or non-cylindrical
helical springs, a computer program coded in Fortran has been devised. With the help
of this program, miscellaneous problems have been solved and their results are given
below.

4.1.  

First, in order to illustrate the efficiency of the numerical algorithm which is capable
of calculating the overall transfer matrix in an accurate manner, a cylindrical helical

Figure 9. The effects of all the rotary inertia and the axial and shear deformations on the free vibration
frequencies, for Dmax /d=5, a=15° and nc =15. Key as for Figure 8.
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spring fixed at both ends has been considered. The results are presented in Table 1.
Satisfactory agreement is evident from Table 1.

4.2. - 

In order to show the convergence of the theoretical results obtained to the exact
solution, a hyperboloidal type spring fixed at both ends has been chosen. The material and
geometrical properties of the spring are: d=2·6 mm, R1 =13 mm, nc =6·5, a=4·8°,
r=7850 kg/m3, E=2·1×1011 N/m2, n=0·3, an = ab =1·1.

Variation of the frequencies of the spring with respect to the number of elements is
presented in Table 2. It is clearly seen from Table 2 that the results obtained by the present
program converge more rapidly. Acceptable results can be computed even if one circle of
the coil is divided into two segments. However, in order to reduce geometric errors, which
will occur especially during the computation of the higher frequencies for small ratios of
R2/R1, 50 elements was found to be adequate.

Other numerical solutions obtained for 50 elements of hyperboloidal spring having
different ratios of R2/R1 are given in Table 3. The same problem has also been treated by
Nagaya et al. [23] both experimentally and theoretically using the Myklestad method. Since
the results had not been presented numerically in that paper, the numerical values of the
frequencies have been obtained approximately from their graphs for comparison.
Inspection of Table 3 clearly indicates that their experimental and numerical results are
in close proximity to the present results.

Figure 10. The effects of all the rotary inertia and the axial and shear deformations on the free vibration
frequencies, for Dmax /d=10, a=5° and nc =5. Key as for Figure 8.
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For the second non-cylindrical example, a barrel type spring is considered. The
properties of the spring are as follows: R1 =25 mm, a=4·8°, n=6·5, E=2·1 ×
1011 N/m2, r=7850 kg/m3, n=0·3, d=2 mm, an = ab =1·1. This problem has also been
studied by Nagaya et al. [23] using the Myklestad method. They have taken into account
only the axial deformation, and neglected the rotary inertia. They have solved this problem
by dividing every coil into 12 segments. Their results, obtained theoretically
and experimentally, have also been presented in graphical form. A close agreement
between the results computed in the present study which are given in Table 4 and some
of their results is evident. It is observed from their graphics that they have missed
frequencies associated with the third and fourth modes. Although these frequencies might
have been computed, they have not been presented. As can be observed from Table 4, the
third and fourth frequencies of the barrel spring are very close to each other. In general,
determination of these frequencies experimentally is very difficult. There is a very good
agreement between the results of the present study and Yıldırım [25].

The material and geometrical properties of the conical spring considered as a third
non-cylindrical example are the same as in the previous example. The numerical results
pertaining to this problem are given in Table 5.

As a fourth non-cylindrical example the hyperboloidal type spring is considered again
in order to compare the frequencies of springs having different irregular shapes and the
same largest radius of circle, Rmax =Dmax /2. The features of this spring are the same as those
for the third example. The frequencies of this example are shown in Table 6.

Figure 11. The effects of all the rotary inertia and the axial and shear deformations on the free vibration
frequencies, for Dmax /d=10, a=5° and nc =15. Key as for Figure 8.
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While some frequencies are very close to each other for the barrel spring (Table 4),
considerable divergences has been found in the case of other types (Tables 5 and 6).

In Figure 3 is shown the variation with R1=R2 (or R2/R1) of two frequencies of various
types of helices. As seen from the figure, the hyperboloidal spring is more rigid than other
types of helices for the same constant largest radius and properties of material. As the
mode number increases, the difference between the frequencies which depends on the type
of helices is increased. The frequencies of springs can be sorted in ascending order as
cylindrical, barrel, conical and hyperboloidal.

5. EFFECTS OF THE NUMBER OF ACTIVE TURNS, THE HELIX PITCH ANGLE,
AND THE RATIO OF (Dmax =d) ON THE NATURAL FREQUENCIES

In this section, the effects of the vibrational parameters chosen such as the helix pitch
angle, the ratio of (Dmax /d), and the number of active turns on the free vibration frequencies
of non-cylindrical helical springs are studied. The results are given in Figures 4 and 5
for the properties of the spring of circular section: r=7850 kg/m3, E=2·1×1011 N/m2,
n=0·3, an = ab =1.1, d=2·6 mm. There is no physical meaning of the ratio of (Rmin /Rmax)
less than 0·4 for the ratio of (Dmax/d=5). As can be observed in these figures, as the helix
angle increases the natural frequencies of all types of helices decrease when all the other
spring properties are kept constant. If the helix angle increases, the total length of the
spring increases, consequently, the stiffness of the spring decreases. When the helix angle
increases, coupled modes begin to emerge. Similarly, as the number of active turns
increases, the spring length increases, and the natural frequencies decrease. Coupled modes
begin to appear with increasing nc . Similar characteristic frequency curves are obtained
for both the ratios (Dmax/d=5) and (Dmax /d=10).

6. THE EFFECTS OF THE ROTARY INERTIA, AXIAL AND SHEAR
DEFORMATIONS ON THE NATURAL FREQUENCIES

In this section relative errors are finally computed to determine the effects of the rotary
inertia, the axial and shear deformation terms on the natural frequencies of all types of
helices. In Figures 6(a)–(c) is shown the effect of neglecting the axial deformation, the
rotary inertia and the shear deformation, respectively, for Dmax/d=5, nc =5 and a=5°.
In Figure 6(d) is shown the relative error when all of the above are neglected. Figure 7
demonstrates the similar cases for Dmax /d=5, nc =5 and a=15°. It is observed from
the figures that the effect of the shear deformation is predominant over the others. The
effect of each term is to be significant for any one of the natural frequencies which varies
with respect to the value of both a and the ratio Rmin /Rmax . In this respect, taking the final
decision may be inadequate. The effect of the rotary inertia terms is generally of more
importance than the effect of the axial deformation. The maximum total relative error is
observed as approximately 2·5% for hyperboloidal type spring.

The effects of the rotary inertia, axial and shear deformation terms are demonstrated
in Figures 8–11. As can be expected, these effects decrease with increasing a, Dmax /d
and nc .

In this section only the first three frequencies are considered. These effects can be more
considerable at higher frequencies.

7. CONCLUSIONS

In the present work, the free vibration frequencies of non-cylindrical helices comprising
the effects of both axial and shear deformations and the rotary inertia have been
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determined theoretically by the transfer matrix method. To the knowledge of the authors,
the results obtained using the numerical algorithm given in section 3 are the closest to the
experimental data available in the open literature. The algorithm presented can be used
efficiently for the determination of the free vibration frequencies of the springs of irregular
shapes. In this study, 300 terms have been taken while determining each F function,
equations (19) and (20), for calculation of the element transfer matrix. This corresponds
to 300×12=3600 terms in equation (16). If equation (16) had been used, the factorial
of 3600 should have been computed. However, this can be avoided with the help of some
numerical manipulations, such as those used in this study. Although 300 terms was thought
to be enough for the examples considered here, it is possible to increase this number if
required.
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